Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543587

RESUMEN

The catabolic activity of the ruminal microbial community of cattle enables the conversion of low-quality feedstuffs into meat and milk. The rate at which this conversion occurs is termed feed efficiency, which is of crucial importance given that feed expenses account for up to 70% of the cost of animal production. The present study assessed the relationship between cattle feed efficiency and the composition of their ruminal microbial communities during the feedlot finishing period. Angus steers (n = 65) were fed a feedlot finishing diet for 82 days and their growth performance metrics were evaluated. These included the dry matter intake (DMI), average daily gain (ADG), and residual feed intake (RFI). Steers were rank-ordered based upon their RFI, and the five lowest RFI (most efficient) and five highest RFI (least efficient) steers were selected for evaluations. Ruminal fluid samples were collected on days 0 and 82 of the finishing period. Volatile fatty acids (VFA) were quantified, and microbial DNA was extracted and the 16S rRNA gene was sequenced. The results showed that the ADG was not different (p = 0.82) between efficiency groups during the 82-day feedlot period; however, the efficient steers had lower (p = 0.03) DMI and RFI (p = 0.003). Less-efficient (high RFI) steers developed higher (p = 0.01) ruminal Methanobrevibacter relative abundances (p = 0.01) and tended (p = 0.09) to have more Methanosphaera. In high-efficiency steers (low RFI), the relative abundances of Ruminococcaceae increased (p = 0.04) over the 82-day period. The molar proportions of VFA were not different between the two efficiency groups, but some changes in the concentration of specific VFA were observed over time. The results indicated that the ruminal microbial populations of the less-efficient steers contained a greater relative abundance of methanogens compared to the high-efficiency steers during the feedlot phase, likely resulting in more energetic waste in the form or methane and less dietary energy being harvested by the less-efficient animals.

2.
Pathogens ; 12(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38133276

RESUMEN

Infection with the foodborne pathogen Campylobacter is the leading bacterial cause of human foodborne illness in the United States. The objectives of this experiment were to test the hypothesis that mixed microbial populations from the bovine rumen may be better at excluding Campylobacter than populations from freshly voided feces and to explore potential reasons as to why the rumen may be a less favorable environment for Campylobacter than feces. In an initial experiment, C. jejuni cultures inoculated without or with freshly collected bovine rumen fluid, bovine feces or their combination were cultured micro-aerobically for 48 h. Results revealed that C. jejuni grew at similar growth rates during the first 6 h of incubation regardless of whether inoculated with the rumen or fecal contents, with rates ranging from 0.178 to 0.222 h-1. However, C. jejuni counts (log10 colony-forming units/mL) at the end of the 48 h incubation were lowest in cultures inoculated with rumen fluid (5.73 log10 CFUs/mL), intermediate in cultures inoculated with feces or both feces and rumen fluid (7.16 and 6.36 log10 CFUs/mL) and highest in pure culture controls that had not been inoculated with the rumen or fecal contents (8.32 log10 CFUs/mL). In follow-up experiments intended to examine the potential effects of hydrogen and hydrogen-consuming methanogens on C. jejuni, freshly collected bovine feces, suspended in anaerobic buffer, were incubated anaerobically under either a 100% carbon dioxide or 50:50 carbon dioxide/hydrogen gas mix. While C. jejuni viability decreased <1 log10 CFUs/mL during incubation of the fecal suspensions, this did not differ whether under low or high hydrogen accumulations or whether the suspensions were treated without or with the mechanistically distinct methanogen inhibitors, 5 mM nitrate, 0.05 mM 2-bromosulfonate or 0.001 mM monensin. These results suggest that little if any competition between C. jejuni and hydrogen-consuming methanogens exists in the bovine intestine based on fecal incubations.

3.
Vet Sci ; 10(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999473

RESUMEN

The objective of this study was to determine the impact of varying dietary manganese and selenium concentrations, antioxidant cofactors, on the growth performance and fecal microbial populations of nursery pigs. The piglets (N = 120) were blocked by weight (5.22 ± 0.7 kg) and sex. The pens (n = 5/treatment) within a block were randomly assigned to diets in a 2 × 3 factorial design to examine the effects of Se (0.1 and 0.3 mg/kg added Se) and Mn (0, 12, and 24 mg/kg added Mn) and were fed in three phases (P1 = d 1-7, P2 = d 8-21, P3 = d 22-35). The pigs and orts were weighed weekly. Fecal samples were collected d 0 and 35 for 16S rRNA bacterial gene sequencing and VFA analysis. The data were analyzed as factorial via GLM in SAS. There was a linear response (p < 0.05) in overall ADG across dietary Mn. Supplementing 24 mg/kg Mn tended to decrease (p < 0.10) the relative abundance of many bacteria possessing pathogenic traits relative to Mn controls. Meanwhile, increasing Mn concentration tended to foster the growth of bacteria correlated with gut health and improved growth (p < 0.10). The data from this study provide preliminary evidence on the positive effects of manganese on growth and gut health of nursery pigs.

4.
Front Neurosci ; 17: 1249539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841685

RESUMEN

Pediatric traumatic brain injury (TBI) is a leading cause of death and disability in children. Due to bidirectional communication between the brain and gut microbial population, introduction of key gut bacteria may mitigate critical TBI-induced secondary injury cascades, thus lessening neural damage and improving functional outcomes. The objective of this study was to determine the efficacy of a daily fecal microbial transplant (FMT) to alleviate neural injury severity, prevent gut dysbiosis, and improve functional recovery post TBI in a translational pediatric piglet model. Male piglets at 4-weeks of age were randomly assigned to Sham + saline, TBI + saline, or TBI + FMT treatment groups. A moderate/severe TBI was induced by controlled cortical impact and Sham pigs underwent craniectomy surgery only. FMT or saline were administered by oral gavage daily for 7 days. MRI was performed 1 day (1D) and 7 days (7D) post TBI. Fecal and cecal samples were collected for 16S rRNA gene sequencing. Ipsilateral brain and ileum tissue samples were collected for histological assessment. Gait and behavior testing were conducted at multiple timepoints. MRI showed that FMT treated animals demonstrated decreased lesion volume and hemorrhage volume at 7D post TBI as compared to 1D post TBI. Histological analysis revealed improved neuron and oligodendrocyte survival and restored ileum tissue morphology at 7D post TBI in FMT treated animals. Microbiome analysis indicated decreased dysbiosis in FMT treated animals with an increase in multiple probiotic Lactobacilli species, associated with anti-inflammatory therapeutic effects, in the cecum of the FMT treated animals, while non-treated TBI animals showed an increase in pathogenic bacteria, associated with inflammation and disease such in feces. FMT mediated enhanced cellular and tissue recovery resulted in improved motor function including stride and step length and voluntary motor activity in FMT treated animals. Here we report for the first time in a highly translatable pediatric piglet TBI model, the potential of FMT treatment to significantly limit cellular and tissue damage leading to improved functional outcomes following a TBI.

5.
Sci Rep ; 13(1): 2520, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781906

RESUMEN

Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity and improved recovery in a pig stroke model. We hypothesized that Tan IIA-NP + iNSC combination therapy-mediated stroke recovery may also have an impact on gut inflammation and integrity in the stroke pigs. Ischemic stroke was induced, and male Yucatan pigs received PBS + PBS (Control, n = 6) or Tan IIA-NP + iNSC (Treatment, n = 6) treatment. The Tan IIA-NP + iNSC treatment reduced expression of jejunal TNF-α, TNF-α receptor1, and phosphorylated IkBα while increasing the expression of jejunal occludin, claudin1, and ZO-1 at 12 weeks post-treatment (PT). Treated pigs had higher fecal short-chain fatty acid (SCFAs) levels than their counterparts throughout the study period, and fecal SCFAs levels were negatively correlated with jejunal inflammation. Interestingly, fecal SCFAs levels were also negatively correlated with brain lesion volume and midline shift at 12 weeks PT. Collectively, the anti-inflammatory and neuroregenerative treatment resulted in increased SCFAs levels, tight junction protein expression, and decreased inflammation in the gut.


Asunto(s)
Accidente Cerebrovascular Isquémico , Nanopartículas , Células-Madre Neurales , Accidente Cerebrovascular , Masculino , Animales , Porcinos , Factor de Necrosis Tumoral alfa , Accidente Cerebrovascular/terapia , Células-Madre Neurales/patología , Inflamación/patología , Ácidos Grasos Volátiles
6.
Foods ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832978

RESUMEN

North America is a large producer of beef and contains approximately 12% of the world's cattle inventory. Feedlots are an integral part of modern cattle production in North America, producing a high-quality, wholesome protein food for humans. Cattle, during their final stage, are fed readily digestible high-energy density rations in feedlots. Cattle in feedlots are susceptible to certain zoonotic diseases that impact cattle health, growth performance, and carcass characteristics, as well as human health. Diseases are often transferred amongst pen-mates, but they can also originate from the environment and be spread by vectors or fomites. Pathogen carriage in the gastrointestinal tract of cattle often leads to direct or indirect contamination of foods and the feedlot environment. This leads to the recirculation of these pathogens that have fecal-oral transmission within a feedlot cattle population for an extended time. Salmonella, Shiga toxin-producing Escherichia coli, and Campylobacter are commonly associated with animal-derived foods and can be transferred to humans through several routes such as contact with infected cattle and the consumption of contaminated meat. Brucellosis, anthrax, and leptospirosis, significant but neglected zoonotic diseases with debilitating impacts on human and animal health, are also discussed.

7.
Microorganisms ; 12(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38257860

RESUMEN

Livestock producers need new technologies to maintain the optimal health and well-being of their animals while minimizing the risks of propagating and disseminating pathogenic and antimicrobial-resistant bacteria to humans or other animals. Where possible, these interventions should contribute to the efficiency and profitability of animal production to avoid passing costs on to consumers. In this study, we examined the potential of nitroethane, 3-nitro-1-propionate, ethyl nitroacetate, taurine and L-cysteinesulfinic acid to modulate rumen methane production, a digestive inefficiency that results in the loss of up to 12% of the host's dietary energy intake and a major contributor of methane as a greenhouse gas to the atmosphere. The potential for these compounds to inhibit the foodborne pathogens, Escherichia coli O157:H7 and Salmonella Typhimurium DT104, was also tested. The results from the present study revealed that anaerobically grown O157:H7 and DT104 treated with the methanogenic inhibitor, ethyl nitroacetate, at concentrations of 3 and 9 mM had decreased (p < 0.05) mean specific growth rates of O157:H7 (by 22 to 36%) and of DT104 (by 16 to 26%) when compared to controls (0.823 and 0.886 h-1, respectively). The growth rates of O157:H7 and DT104 were decreased (p < 0.05) from controls by 31 to 73% and by 41 to 78% by α-lipoic acid, which we also found to inhibit in vitro rumen methanogenesis up to 66% (p < 0.05). Ethyl nitroacetate was mainly bacteriostatic, whereas 9 mM α-lipoic acid decreased (p < 0.05) maximal optical densities (measured at 600 nm) of O157:H7 and DT104 by 25 and 42% compared to controls (0.448 and 0.451, respectively). In the present study, the other oxidized nitro and organosulfur compounds were neither antimicrobial nor anti-methanogenic.

8.
Front Microbiol ; 13: 984119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225385

RESUMEN

Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.

9.
Transl Anim Sci ; 6(4): txac118, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249881

RESUMEN

Johnsongrass [Sorghum halepense (L.) Pers.] is a non-native, invasive species that causes substantial losses in row crops and hay fields, which could be minimized by using Johnsongrass as a conserved forage. Two experiments were conducted to evaluate the yield and quality of Johnsongrass ensiled at four maturities: harvested every 3 weeks (3WK), boot stage (BOOT), flower stage (FLOWER), and dough (DOUGH) stages. In experiment 1, yield, botanical composition, nutritive value, and fermentation characteristics of Johnsongrass were measured. In experiment 2, Johnsongrass silage was incubated for 48 h for assessment of gas production, pH, in vitro dry matter digestibility (IVDMD), and volatile fatty acids. The experimental area consisted of 16 plots (2.74 m × 4.57 m) divided into four blocks, and treatment was randomly assigned to plot within block. Each year, silage was prepared for each plot from the two cutting closest to July 1. After 10 weeks, the silos were opened, and silage samples were frozen for further analysis. Data from both experiments were tested for the effects of maturity stage and harvest timing (first and second harvest). The results from experiment 1 showed an increase (P < 0.0001) in dry matter yield from 3WK stage to DOUGH. Johnsongrass, as a proportion of the total botanical composition, declined at the end of the growing season for 3WK but increased in FLOWER (P = 0.0010). In the first harvest, 3WK and BOOT stage silages had the greatest concentrations of crude protein and total digestible nutrients and lowest of fiber (neutral detergent fiber and acid detergent fiber; P < 0.0001). In the second harvest, differences in nutrient content were significant only for 3WK silages, which showed the best nutritive value (P < 0.0001). In experiment 2, IVDMD of silage followed the same trends described for nutritive value from experiment 1. Overall, these results demonstrate that Johnsongrass can be successfully ensiled, but to optimize forage nutritive value and quantity, Johnsongrass should be ensiled before it reaches the flower stage.

10.
Front Physiol ; 13: 912797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117708

RESUMEN

This study was conducted to investigate the effects of different dosages of tannic acid (TA) on growth performance, nutrient digestibility, gut health, immune system, oxidative status, microbial composition, volatile fatty acids (VFA), bone mineral density, and fat digestion and accumulation in broilers and to find optimal dosages of TA for efficient growth and gut health in broilers. A total of 320 male Cobb500 broilers were randomly distributed to 4 treatments with 8 replicates including 1) tannic acid 0 (TA0): basal diet without TA; 2) tannic acid 0.5 (TA0.5): basal diet with 0.5 g/kg TA; 3) tannic acid 1.5 (TA1.5); and 4) tannic acid 2.5 (TA2.5). Supplemental TA at levels greater than 972 mg/kg tended to reduce BW on D 21 (p = 0.05). The TA2.5 had significantly lower apparent ileal digestibility (AID) of crude protein compared to the TA0 group. The AID of ether extract tended to be reduced by TA at levels greater than 525 mg/kg (p = 0.08). The jejunal lipase activities tended to be reduced by TA at levels less than 595.3 mg/kg (p = 0.09). TA linearly decreased goblet cell density in the crypts of the jejunum (p < 0.05) and reduced mRNA expression of mucin two at levels less than 784.9 mg/kg and zonula occludens two at levels less than 892.6 mg/kg (p < 0.05). The TA0.5 group had higher activities of liver superoxide dismutase compared to the TA0 group (p < 0.05). Bone mineral density and contents tended to be linearly decreased by TA (p = 0.05), and the ratio of lean to fat was linearly decreased (p < 0.01). Total cecal VFA production tended to be linearly reduced by TA at levels greater than 850.9 mg/kg (p = 0.07). Supplemental TA tended to increase the relative abundance of the phylum Bacteroidetes (p = 0.1) and decrease the relative abundance of the phylum Proteobacteria (p = 0.1). The relative abundance of the family Rikenellaceae was the lowest at 500 mg/kg TA, and the relative abundance of the family Bacillaceae was the highest at 1,045 mg/kg TA. Collectively, these results indicate that the optimum level of supplemental TA would range between 500 and 900 mg/kg; this range of TA supplementation would improve gut health without negatively affecting growth performance in broilers under antibiotic-free conditions.

11.
Brain Sci ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009173

RESUMEN

Dynamic changes in the oral microbiome have gained attention due to their potential diagnostic role in neurological diseases such as Alzheimer's disease and Parkinson's disease. Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have examined the changes in oral microbiome during the acute stage of TBI using a clinically translational pig model. Crossbred piglets (4-5 weeks old, male) underwent either a controlled cortical impact (TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and 7 days post-surgery (PS) using the 16S rRNA gene. Faith's phylogenetic diversity was significantly lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days PS was significantly different between TBI and sham piglets. However, no significant changes in the taxonomic composition of the oral microbiome were observed following TBI compared to sham. Further studies are needed to investigate the potential diagnostic role of the oral microbiome during the chronic stage of TBI with a larger number of subjects.

12.
Transl Anim Sci ; 6(3): txac098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35959416

RESUMEN

The microbial population in the gastrointestinal tract of ruminant animals aids in the utilization of forages with high levels of secondary plant compounds. Two divergent bloodlines of meat goats have been selected by screening fecal samples with near-infrared reflectance spectroscopy to assess the goat's consumption of high or low levels of Juniperus sp. leaves containing several monoterpenes, including camphor. The mechanism by which these goats can consume greater concentrations of Juniperus spp. leaves than their counterparts is unclear, and therefore, this study was designed to determine if differences existed between the ruminal microbial populations of the low and high juniper-consuming bloodlines (LJC vs. HJC) by analyzing their ruminal microbiota and fermentation end products. In the present study, concentrations (0.00, 0.5, 0.99, 1.97, or 5.91 mM) of camphor were added to mixed ruminal microorganism fermentation. Five LJC and five HJC goats were fed a juniper-free diet (n = 10), and five LJC and five HJC goats (n = 10) were fed a diet that contained 30% fresh Juniperus ashei leaves for 21 d prior to ruminal fluid collection. In vitro fermentations used LJC and HJC, ruminal fluid inoculum added (33% v/v) to anoxic media in sealed Balch tubes. Camphor increased (P < 0.05) total short-chain fatty acid (SCFA) concentrations for all but one experimental group. Between the main dietary and bloodline goat effects, the diet was significant for all SCFA results except butyrate. In contrast, bloodline was only significant for acetate and butyrate molar proportions. Rumen fluid from juniper-free-fed goats exhibited greater concentrations of Ruminococcaceae, whereas juniper-fed goats contained more Coriobacteriaceae. Results demonstrated that mixed ruminal microorganisms fermentations from HJC goats did not produce greater concentrations of SCFAs or have the ability to degrade camphor at a higher rate than did that from LJC goats. Results suggest that camphor tolerance from J. ashei, was related to hepatic catabolic mechanisms instead of ruminal microbial degradation; however, further in vivo work is warranted.

13.
Transl Anim Sci ; 6(3): txac097, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36000072

RESUMEN

Encroaching plant species in West Texas continues to significantly reduce livestock production capacity and cause an imbalance between plant and livestock ecology. Juniperus ashei and Juniperus pinchotii are encroaching species rarely used by browsing animals, mainly due to phytochemical defenses. Juniperus spp. contain large concentrations of monoterpenes in their essential oil profiles to deter herbivory. Since 2003, two divergent bloodlines of meat goats have been selected to consume low or high (LJC or HJC) amounts of juniper foliage, through screening fecal samples with near-infrared reflectance spectroscopy. However, it remains unclear whether HJC goats expressed a physiological ability to consume a greater amount of juniper or if they were colonized by a ruminal microbial population that could detoxify juniper phytochemicals. Therefore, this study aimed to investigate the impact of 0.00 and 1.97 mM of camphor on the mixed ruminal microorganism fermentation after 0, 1, 2, 4, 12, and 24 h of incubation. Five LJC and five HJC goats were fed a juniper-free diet (n = 10) and five LJC and five HJC goats (n = 10), were fed a diet containing 30% fresh J. ashei leaves for 21 days prior to ruminal fluid collection. In vitro fermentations used LJC and HJC, ruminal fluid inoculum was added (33% v/v) to anoxic media in sealed Balch tubes. Total short-chain fatty acid (SCFA) production and acetate to propionate ratio were increased (P < 0.05), but there was no effect on pH (6.56 ± 0.09). Goats that received the juniper-free diet had higher (P < 0.05) SCFA production than juniper-containing diets. There was no consistent difference in LJC and HJC microbial fermentation end products caused by the addition of 1.97 mM of camphor, and goats receiving a juniper-free diet consistently generated more SCFAs in the presence of 1.97 mM of camphor. Furthermore, bloodline differences in juniper consumption were likely related to physiological adaption capacities within the animal and not a ruminal microbial detoxification advantage.

14.
Microorganisms ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744646

RESUMEN

The gastrointestinal microbiota of cattle is important for feedstuff degradation and feed efficiency determination. This study evaluated the fecal microbiome of Angus steers with distinct feed efficiencies during the feedlot-finishing phase. Angus steers (n = 65), fed a feedlot-finishing diet for 82 days, had growth performance metrics evaluated. Steers were ranked based upon residual feed intake (RFI), and the 5 lowest RFI (most efficient) and 5 highest RFI (least efficient) steers were selected for evaluation. Fecal samples were collected on 0-d and 82-d of the finishing period and microbial DNA was extracted and evaluated by 16S rRNA gene sequencing. During the feedlot trial, inefficient steers had decreased (p = 0.02) Ruminococcaceae populations and increased (p = 0.01) Clostridiaceae populations. Conversely, efficient steers had increased Peptostreptococcaceae (p = 0.03) and Turicibacteraceae (p = 0.01), and a trend for decreased Proteobacteria abundance (p = 0.096). Efficient steers had increased microbial richness and diversity during the feedlot period, which likely resulted in increased fiber-degrading enzymes in their hindgut, allowing them to extract more energy from the feed. Results suggest that cattle with better feed efficiency have greater diversity of hindgut microorganisms, resulting in more enzymes available for digestion, and improving energy harvest in the gut of efficient cattle.

15.
Transl Anim Sci ; 6(2): txac075, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35769454

RESUMEN

Dry seasons pose a major nutritional constraint on ruminant livestock production in tropical regions, which justifies forage conservation to meet the dry season feed requirement. Napier grass is a tropical forage that is used for silage in South Africa. The present objective was to determine the effects of Napier grass fertilization with bio-digester slurry (BDS) and the inclusion of fermentable carbohydrate additives at ensiling on the chemical composition and ruminal degradability of Napier grass silage. Napier grass was established in 5 × 4 m plots, replicated three times in a completely randomized design, and irrigated weekly with either BDS or water. After 12 weeks, the Napier was cut and ensiled for 90 days in 1-liter glass jars in a 2 (BDS, water) × 4 (no-additive, molasses, brown sugar, and maize meal) factorial arrangement replicated three times. The nutrient composition was determined using standard protocols. The ruminal degradability of dry matter (DM) and crude protein (CP) was determined using the nylon bag technique. Fertilization with BDS increased (P < 0.05) pH and CP and reduced (P < 0.05) fat content of fresh-cut Napier. Additives increased (P < 0.01) silage DM content and reduced (P < 0.01) acid detergent fiber, neutral detergent fiber content. The BDS fertilization with molasses inclusion increased (P < 0.05) silage DM relative to the no-additive and maize meal inclusion, and decreased (P < 0.05) fat content compared to the no-fertilizer, added maize meal silage. Molasses increased silage water-soluble carbohydrate and decreased the NH3-N content (P < 0.05) compared to the no-additive and maize meal treatments. For DM, the BDS fertilized, no additive silage had the least "a" fraction (P < 0.01), while the no BDS, no-additive silage had the least "b" fraction (P < 0.01), with least (P < 0.01) potential degradability (PD) observed for the no BDS, no-additive treatment. Fertilization increased (P < 0.01) effective degradability of DM at outflow rates k = 0.02, 0.05, 0.08, with same effect for molasses and maize meal inclusion. Relative to the control, molasses inclusion increased (P < 0.01) PD of silage CP. In conclusion, our results suggested BDS fertilization of Napier grass ensiling with added readily fermentable carbohydrate substrate, particularly from molasses, induced changes in silage chemical and fermentation characteristics likely to promote better forage preservation and ruminal microbial function.

16.
Animals (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565493

RESUMEN

The ruminal microbiota of Angus cows and steers were characterized using 16s rRNA gene sequencing, and the expression of their metabolic pathways was predicted. Samples were collected on weaning day from the steers and the cows, and subsequently on three other occasions from the steers. Results showed that microbial richness, evenness, and diversity decreased (p < 0.001) in the rumen of the steers as they were weaned and transitioned to a high-concentrate feedlot diet. However, on the day of weaning, microbial evenness was similar to that observed in the rumen of cows (p = 0.12). The abundance of archaea was similar (p = 0.59) between the cows and steers at weaning, but it decreased (p = 0.04) in the rumen of steers after weaning, and remained stable (p ≥ 0.44) for the remainder of their lives. Likewise, no difference (p = 0.51) in the abundance of Bacteroidetes was detected between the cows and the calves on the day they were weaned, but the abundance of this phylum increased (p = 0.001) and remained stable after that. These results suggest that cows may have a strong influence on the composition, and help modulate the ruminal microbiota of young calves; however, following weaning, their ruminal microbiotas tend to differentiate from that state observed at earlier ages.

17.
Antioxidants (Basel) ; 11(5)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35624838

RESUMEN

Nematopsis messor infections severely impact on shrimp's health with devastating economic consequences on shrimp farming. In a shrimp primary intestinal cells (SGP) model of infection, a sub-inhibitory concentration (0.5%) of natural antimicrobials (Aq) was able to reduce the ability of N. messor to infect (p < 0.0001). To prevent N. messor infection of SGP cells, Aq inhibits host actin polymerization and restores tight junction integrity (TEER) and the expression of Zo-1 and occluding. The oxidative burst, caused by N. messor infection, is attenuated by Aq through the inhibition of NADPH-produced H2O2. Simultaneous to the reduction in H2O2 released, the activity of catalase (CAT) and superoxide dismutase (SOD) were also significantly increase (p < 0.0001). The antimicrobial mixture inactivates the ERK signal transduction pathway by tyrosine dephosphorylation and reduces the expression of DCR2, ALF-A, and ALF-C antimicrobial peptides. The observed in vitro results were also translated in vivo, whereby the use of a shrimp challenge test, we show that in N. messor infected shrimp the mortality rate was 68% compared to the Aq-treated group where the mortality rate was maintained at 14%. The significant increase in CAT and SOD activity in treated and infected shrimp suggested an in vivo antioxidant role for Aq. In conclusion, our study shows that Aq can efficiently reduce N. messor colonization of shrimp's intestinal cells in vitro and in vivo and the oxidative induced cellular damage, repairs epithelial integrity, and enhances gut immunity.

18.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326136

RESUMEN

The objective of this study was to investigate the effect of a diet supplemented with fresh amla fruit as a natural feed additive on blood metabolic parameters, milk antioxidant capacity, and milk fatty acid (FA) proportions in lactating dairy cows. Eight ruminally cannulated mid-lactation dairy cows were used in a repeated crossover design. The first group of four cows received total mixed ration (TMR) feed without fresh amla fruit (control group). The remaining four cows sequentially supplemented fresh amla fruit (FAF) at three levels (200, 400, then 600 g/d) (treatment group) at 14-day intervals. In second period, control and treatment groups were exchanged. The first ten days were adjusted to diet adaptation for each sub-period, and the last four days for sampling milk and blood. A total of 514 metabolites were detected from FAF using UPLC-ESI-MS/MS. The five main metabolites in FAF were phenolic acids (22%), flavonoids (20%), lipids (20%), amino acids and derivatives (9%), and tannins (7%). Amla fruit supplementation reduced total saturated fatty acid and the omega-6/omega-3 ratio at 200 or 400 g/d FAF dose compared to controls. In addition, amla fruit increased unsaturated FA, such as C20:5 (Eicosapentaenoic acid, EPA) and C22:6 (docosahexaenoic acid, DHA), and branched-chain FA in a dose-dependent manner at 200 or 400 g/d compared to controls. In addition, amla fruit increased the antioxidant capacity biomarkers in the blood, such as superoxide dismutase (SOD) and albumin; this confirms that amla fruit is an excellent antioxidant, inhibiting reactive oxygen species' (ROS) metabolism, and can thereby protect cells from oxidative stress. Moreover, the most remarkable improvement of ferric reducing-antioxidant power (FRAP) and total antioxidant capacity (TAC) in milk was recorded at 400 g/d FAF doses compared to controls. Therefore, fresh amla fruit doses for lactating cows at 400 g/d on an as-fed basis can be used as an alternative additive feed in dairy cow diets to improve antioxidant capacity, protein efficiency, butter quality, and to produce more desirable milk fatty acid profiles for human consumption.

19.
Sci Rep ; 12(1): 4899, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318361

RESUMEN

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Asunto(s)
Alcaloides de Claviceps , Festuca , Lolium , Micotoxicosis , Alimentación Animal/análisis , Animales , Bovinos , Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidad , Festuca/metabolismo , Lolium/microbiología
20.
Annu Rev Food Sci Technol ; 13: 433-461, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-34990223

RESUMEN

The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics-also known as direct-fed microbials-competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement-based treatments in food-producing animals.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Simbióticos , Animales , Tracto Gastrointestinal/microbiología , Prebióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...